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Abstract
Fully explicit closed-form expressions are developed for the fair strike prices of discrete-time
variance swaps under general affine GARCH type models that have been risk-neutralized
with a family of variance dependent pricing kernels. The methodology relies on solving
differential recursions for the coefficients of the joint cumulant generating function of the
log price and the conditional variance processes. An alternative derivation is provided in the
case of Gaussian innovations. Using standard assumptions on the asymptotic behavior of the
GARCH parameters as the sampling frequency increases, the diffusion limit of a Gaussian
GARCHmodel is derived and the convergence of the variance swap prices to its continuous-
time limit is further investigated. Numerical examples on the term structure of the variance
swap rates and on the convergence results are also presented.
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1 Introduction

Volatility derivatives are financial instruments with volatility as the underlying tradeable.
Here, the term “volatility” has a broad meaning and can refer to the realized volatility of
the stock or index, the volatility index (VIX), the spot volatility, etc. Variance swaps (VS)
are the first and most prominent volatility derivatives introduced in the market.1 These are
contracts under which the actual realized variance over a period is exchanged (or swapped)
with a pre-specified variance level named the fair strike. Traditionally, practitioners carry out
volatility trading (i.e. trade with a viewpoint towards the direction of volatility movement)
through delta hedging options. The economic motivation for introducing the variance swaps
into the market is to offer investors direct exposure to the volatility of the underlying asset
(either index or individual name stock), without the need of options. Buying a variance swap
is equivalent to holding a long position in the volatility at the strike level, which means that
one makes a profit if the market delivers more volatility than the strike level, and vice versa.
On the hedging side, from the above discussions, it is clear that the variance swap can be
replicated by a static portfolio of options. These two features, namely the direct exposure to
volatility, and the ease of replication, make variance swaps a useful and attractive financial
instrument.

Volatility derivatives are in practice based on the realized variance, which is the sum
of squares of the discretely sampled log stock prices. However, most academic literature
concerns the price of continuously sampled contracts as approximations, that is, the realized
variance (RV) is replaced by the quadratic variation (QV) process (see studies in Broadie and
Jain (2008), Jarrow et al. (2013), Bernard andCui (2014), Bernard et al. (2014), and Lian et al.
(2014)). This approximation deteriorates as the sampling frequency decreases and it is hence
of interest to obtain an exact formula for discretely sampled volatility derivatives. Under the
assumption of continuous asset price paths, the QV process reduces to the familiar integrated
variance (IV). There are two main approaches to VS pricing based on the QV methodology:
the first approach, as derived in Demeterfi et al. (1999) and Carr and Madan (1998) consists
in calculating the VS strike price by replicating the swap payoff with a portfolio of European
options. This replication strategy requires the assumption of continuous price paths and is the
basis for the VIX calculation. The second is based on calculating the expected QV of the asset
process explicitly. This latter approach does not require the continuous asset price assumption,
thus allowing for non-Gaussian asset pricing models. Notable examples include the pricing
of VS in the Heston model, as derived in Brockhaus (2000), and a similar approach is applied
to Nelson’s GARCH diffusion model in Javaheri et al. (2004), and a GARCH-like model
with delay in Swishchuk (2005). Variance swaps for a non-Gaussian Ornstein–Uhlenbeck
stochastic volatility model are considered in Benth et al. (2007), affine jump diffusion and
jump diffusion models with stochastic volatility in Broadie and Jain (2008), and for general
affinemodels inKallsen et al. (2011). Volatility swaps, on the other hand, cannot be replicated
using European options, and closed-form solutions for the fair volatility swap strike price, in
general, do not exist. One approach commonly seen in the literature in pricing volatility swaps
is based on the approximation presented in Brockhaus (2000). Zhu and Lian (2011) consider
variance and volatility swap pricing without relying on the RV approximation through the
QV; an exact solution for the fair strike price for VS in the Heston model is derived and the
effect of discretely sampled asset prices is examined.

1 For a survey of the academic literature about volatility derivatives, please refer to Carr and Lee (2009), and
references therein.
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Since their introduction by the Chicago Board Options Exchange (CBOE) in 2004, VIX
derivatives have gained a lot of interest in practice and in academic studies. Most of the litera-
ture so far has focused on the continuous time setting, underwhich, either the underlying asset
price or the VIX itself is modelled by continuous time stochastic processes. For the valuation
of VIX derivatives and related empirical work, please refer to the recent papers of Duan and
Yeh (2010), Mencía and Sentana (2013), Song and Xiu (2016), and the references therein.
In discrete-time, VIX index pricing has been considered under non-affine GARCH models
by Hao and Zhang (2013) for Gaussian innovations and by Lalancette and Simonato (2017)
for Johnson distributed noise. One of the main disadvantages of non-affine (GARCH) set-
tings is that they do not generally allow for explicit solutions for VIX related quantities.
Wang et al. (2017) obtained a closed-form pricing formula for the CBOE VIX futures under
the Heston and Nandi (2000a) model driven by Gaussian innovations (HN-GARCH), while
Chorro and Rahantamialisoa (2016) derived an analytic solution for the VIX index under
an affine Inverse Gaussian GARCH model. The VIX formula in the affine GARCH models
is given in terms of the square root of an affine function of the terminal variance process,
which can be priced from knowing the moment generating function of the terminal variance
process only. However, the discretely sampled variance swap has a path-dependent payoff
that involves accumulating squares of log returns. Thus, it is more challenging to valuate
discretely sampled VS compared to VIX derivatives under the affine GARCH models.

In a recent paper, Badescu et al. (2018) considered the pricing of variance swaps in
general non-affine GARCH settings and provide closed-form expressions only for Gaussian
environments. They provided explicit VS pricing estimates based on non-Gaussian GARCH
assumptions for the underlying, and investigated the convergence of VS rates to continuous-
time counterparts. To the best of the authors’ knowledge, this represented the first attempt in
the literature to price VS within a GARCH environment.2

In this paper, we consider the pricing of VS contracts within a general class of affine
GARCH models. More specifically, we provide for the first time an explicit exact closed-
form expression for the fair strike of discretely monitored VS and investigate the convergence
of VS rates for a special affine Gaussian GARCH model.

The main contributions of the paper are illustrated in detail below. First, we consider a
general affine GARCH pricing framework via a variance dependent pricing kernel and we
derive a closed-form exact formula for the fair strike price of discretely sampled VS. In
particular, we show that when the multi-step risk-neutral joint cumulant generating function
(c.g.f) of log-price and variance processes is affine,we can express the variance swapprice as a
quadratic function of the spot variancewith coefficients depending only on thefirst and second
order derivatives of the one-step bivariate c.g.f. of log-price and variance. Furthermore, for the
specialHN-GARCHmodel,we provide an alternative derivation of theVSprice using a direct
evaluation methodology, which does not rely on the more general recursive approach based
on the affine c.g.f. structure, but leads to the same result. Secondly, using standard asymptotic
constraints on the GARCH parameters as in Nelson (1990), we derive the continuous weak
diffusion limit of the HN-GARCH model under the proposed variance dependent pricing
kernel. The continuously sampled fair strike of VS is computed based on this process and we
further show that this rate represents the limit of the GARCH based counterpart constructed
based on the RV definition. Finally, we provide two numerical exercises in whichwe illustrate
the term structure of the VS rates implied by the historical asset returns on S&P 500 via a

2 Note that Badescu et al. (2018) considered a non-affine GARCH setting while our current work is focused on
affineGARCHmodels. Furthermore, the pricingmethods employed and the convergence results are completely
different.
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rolling window estimation technique, and we numerically investigate the convergence from
discretely to continuously sampled fair strikes for different maturities and levels of risk-
neutral to physical variance ratio.

The rest of the paper is structured as follows: Section 2 introduces the affine GARCH
setup and discusses the choice of risk-neutralization within the class of variance dependent
pricing kernels. Section 3 presents the valuation formulas for discretely sampled variance
swaps and discusses the HN-GARCH special case. Section 4 introduces the weak diffusion
limit of the underlying HN-GARCH model based on the variance dependent pricing kernel
and demonstrates theoretically the convergence of the discrete VS prices to their continuous
counterparts. Section 5 presents numerical examples illustrating the convergence. Section 6
concludes the paper with future research directions.

2 Affine GARCHmodels and exponential pricing kernels

In this section, we introduce a general derivatives pricing framework within the class of affine
GARCH models, and we later discuss in detail a prominent special case, the HN-GARCH
model.

2.1 A general affine GARCH pricing framework

We consider a discrete-time setting defined on the interval [0, . . . , T ], which consists of nT
trading dates taking place at equally spaced subintervals of length� = 1/n. The filtered prob-
ability space associated to this framework is denoted by

(
�,F, {Fk�}k=0,...,nT , P

)
, where

P is the underlying physical measure. We let Y = {Yk�}k=0,...,nT := {log Sk�}k=0,...,nT be
the log-asset price process at time k�, and we denote by yk� := Yk�−Y(k−1)� the log-return
process over the period [(k − 1)�, k�]. We assume that the returns dynamics are driven by a
single factor, which is taken here to be the conditional variance process h = {hk�}k=1,...,nT ,
an Fk�-predictable process defined by hk� := VarP

[
yk� | F(k−1)�

]
.

In general, the discretized version of an affine GARCH(1,1) model dynamic can be sum-
marized by the following equations:

yk� = f1 (hk�, θ(�)) + √
�

√
hk�εk�, (2.1)

h(k+1)� = f2 (hk�, θ(�)) + f3 (hk�, εk�, θ(�)) . (2.2)

Here εk� is a sequence of F(k−1)�-conditional i.i.d. random variables with a finite moment
generating function and θ is a vector of parameters that obey some constraints in order to
ensure the non-negativity and stationarity of the conditional variance process.3 The functions
f1 and f2 are affine in hk�, while the form of the news function f3 is dictated by the
innovation distribution. More specifically, it is chosen such that the conditional bivariate
cumulant generating function (c.g.f.) of

(
yk�, h(k+1)�

)
has the following affine structure:

C(yk�,h(k+1)�)

(
φ,ψ | F(k−1)�

) = log EP [
exp

(
φyk� + ψh(k+1)�

) | F(k−1)�
]

= A (φ, ψ; (k − 1)�, k�) + B (φ, ψ; (k − 1)�, k�) hk�.

(2.3)

3 Specific constraints will be provided for the Heston and Nandi (2000a) GARCH(1,1) model introduced in
Sect. 2.2.
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Here the coefficients A and B are real-valued functions that depend on model param-
eters and the time step �, and satisfy the initial conditions: A (0, 0; (k − 1)�, k�) =
B (0, 0; (k − 1)�, k�) = 0, for any k = 1, · · · , nT .4 In order to ensure that hk� represents
the conditional variance of yk� per time step of length �, A and B should also verify that(
∂2A (φ, 0; (k − 1)�, k�) /∂φ2

)
φ=0 = 0 and

(
∂2B (φ, 0; (k − 1)�, k�) /∂φ2

)
φ=0 = �.

In the affine GARCH option pricing literature, it is sometimes more convenient to work
with quantities related to the log-asset price process Yk�, thus we rewrite Eq. (2.3) in the
following equivalent way:

C(Yk�,h(k+1)�)

(
φ,ψ | F(k−1)�

) = A (φ, ψ; (k − 1)�, k�) + φY(k−1)�

+B (φ, ψ; (k − 1)�, k�) hk�. (2.4)

Using (2.4), we can now characterize the multi-step conditional bivariate c.g.f. of Yk� and
h(k+1)� in the proposition below.

Proposition 2.1 For any l < k, with k = 1, . . . , nT − 1, the joint c.g.f. of
(
Yk�, h(k+1)�

)

conditional on Fl� is given by:

C(Yk�,h(k+1)�) (φ, ψ | Fl�) = A (φ, ψ; l�, k�) + φYl� + B (φ, ψ; l�, k�) h(l+1)�.

(2.5)

Here the coefficients A (φ, ψ; l�, k�) and B (φ, ψ; l�, k�) satisfy the following recur-
sions:

A (φ, ψ; l�, k�) = A (φ, ψ; (l + 1)�, k�)

+A (φ, B (φ, ψ; (l + 1)�, k�) ; l�, (l + 1)�) . (2.6)

B (φ, ψ; l�, k�) = B (φ, B (φ, ψ; (l + 1)�, k�) ; l�, (l + 1)�) , (2.7)

with the terminal conditions A (φ, ψ; k�, k�) = 0 and B (φ, ψ; k�, k�) = ψ , for any
real-valued φ and ψ .

Proof See Section A.1 in the “Appendix”. ��
The next step is to characterize the risk-neutral affine representation of the asset returns
and conditional variance. Since the market described by the general model from (2.1)–
(2.2) is incomplete, we need to identify a pricing kernel candidate. We follow the standard
approach proposed in the discrete-time affine framework literature (see e.g. Christoffersen
et al. (2013a), Majewski et al. (2015), Khrapov and Renault (2016) among others) and use a
variance dependent pricing kernel of the following form:

dQ

dP

∣
∣∣FT

:=
nT∏

k=1

exp
(
η1(�)yk� + η2(�)h(k+1)� − C(yk�,h(k+1)�)

(
η1(�), η2(�) | F(k−1)�

))
.

(2.8)
Here η1(�) and η2(�) are the market prices of equity and variance risk, respectively, which,
unlike in the non-affine GARCH framework of Badescu et al. (2017), are assumed to depend
only on the time step �, but not on k. As further explained in Badescu et al. (2017), allowing
the latter dependence may alter the affine structure of the model. The normalizing constant

4 Note that the functions A (0, 0; (k − 1)�, k�) and B (0, 0; (k − 1)�, k�) defined in (2.3) do not depend
on k, but we choose to keep this notation because later on we introduce an exponential affine structure for the
multi-step bivariate distribution of returns and conditional variance and we shall use the same symbols for the
corresponding coefficients.
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C(yk�,h(k+1)�)

(
η1(�), η2(�) | F(k−1)�

)
ensures that Q is a well-defined probability mea-

sure. Christoffersen et al. (2013a) showed that such a pricing kernel improves considerably
the pricing performance of a Gaussian and Inverse Gaussian driven affine GARCH model
relative to the standard conditional Esscher transform, which ignores the effect of a market
price of variance risk.

We need to impose a condition on the two risk premium parameters η1(�) and η2(�),
such that the no-arbitrage conditions are satisfied (i.e. Q is an equivalent martingale mea-
sure with respect to P). More specifically, we require that the discounted asset price
process is a martingale under the risk-neutral measure Q, which is equivalent to having
EQ

[
exp (yk�) | F(k−1)�

] = exp (r�) for any k = 1, · · · , nT , where r represents the one-
period risk-free interest rate. An important advantage of the pricing kernel from (2.8) over
other potential candidates is that it preserves the affine structure of the model after the change
of measure. The next result characterizes the joint cumulant generating function of yk� and
h(k+1)� under the risk-neutral measure Q.

Proposition 2.2 The risk-neutral joint c.g.f. of
(
yk�, h(k+1)�

)
conditional onF(k−1)� is given

by:

CQ
(yk�,h(k+1)�)

(
φ,ψ | F(k−1)�

) = AQ (φ, ψ; (k − 1)�, k�)

+BQ (φ, ψ; (k − 1)�, k�) hk�. (2.9)

Here, the coefficients AQ (φ, ψ; l�, k�) and BQ (φ, ψ; l�, k�) satisfy the following rela-
tionships:

AQ (φ, ψ; (k − 1)�, k�) = A (φ + η1(�),ψ + η2(�); (k − 1)�, k�)

− A (η1(�), η2(�); (k − 1)�, k�) , (2.10)

BQ (φ, ψ; (k − 1)�, k�) = B (φ + η1(�),ψ + η2(�); (k − 1)�, k�)

− B (η1(�), η2(�); (k − 1)�, k�) , (2.11)

and the market prices of risk η1(�) and η2(�) satisfy the no-arbitrage constraints below:

A (1 + η1(�), η2(�); (k − 1)�, k�) = A (η1(�), η2(�); (k − 1)�, k�) + r�,(2.12)

B (1 + η1(�), η2(�); (k − 1)�, k�) = B (η1(�), η2(�); (k − 1)�, k�) . (2.13)

Proof See Section A.2 in the “Appendix”. ��

Following Proposition 2.1, we can obtain an affine formulation for the conditional multi-step
joint c.g.f. of

(
Yk�, h(k+1)�

)
under Q, with the coefficients satisfying recursions similar to

those in (2.6)–(2.7). However, as we shall see in the later section, it is more convenient to
work with quantities related to the risk-neutral conditional variance instead of h(k+1)�.

Finally, we notice that although we are able to characterize the risk-neutral joint c.g.f.
in terms of the exponential affine coefficients under P , we cannot provide explicit risk-
neutral asset return dynamics similar to those from (2.1)–(2.2), unless we specify both the
P-innovation distribution and the volatility function f3. These are provided for the special
model (i.e. the HN-GARCH model) considered in the next subsection.

Our numerical analysis shall be based on a special case of the more general setting intro-
duced in (2.1)–(2.2), which obeys the affine representation from (2.3). More specifically, we
consider the Gaussian affine GARCH model of Heston and Nandi (2000a).
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2.2 The affine Gaussian GARCHmodel (HN-GARCHmodel)

We assume that yk� follows a discretized version of the Heston and Nandi (2000a)
GARCH(1,1) model under the historical measure P:

yk� = (r + λhk�) � + √
�

√
hk�εk�, εk�

P∼ N(0, 1), (2.14)

h(k+1)� = ω(�) + β(�)hk� + α(�)
(
εk� − γ (�)

√
hk�

)2
. (2.15)

Note that the above dynamics represents a special case of the model (2.1)–(2.2) if we take
f1 = r + λhk�, f2 = ω(�) + β(�)hk� and f3 = α(�)

(
εk� − γ (�)

√
hk�

)2
. Here the

parameter λ quantifies the market price of equity risk.5 The GARCH innovations εk� are
assumed to be i.i.d. Gaussian distributed random variables. We assume that the parameters
governing the conditional variance dynamic from (2.15) satisfy the usual constraints, which
ensure the stationarity of the model. For instance, we impose that ω(�), α(�) and β(�) are
non-negative, and the persistence satisfies d(�) = β(�) + α(�)γ 2(�) < 1. The parameter
γ (�) quantifies the leverage effect, which is a positive value implying a negative correlation
between the asset return and the volatility level, as usually observed in the equity markets.
Later on, we shall use specific representations of the time-dependent GARCH parameters,
which allow us to compute the weak diffusion limits.

Using the fact that the joint c.g.f. of εk� and ε2k� is given by:

C(
εk�,ε2k�

) (φ, ψ) = −1

2
log (1 − 2ψ) + φ2

2(1 − 2ψ)
,

we can show that the one-step conditional joint c.g.f. of
(
yk�, h(k+1)�

)
has the affine structure

from (2.3) with the coefficients given by:

A (φ, ψ; (k − 1)�, k�) = φr� + ψω(�) − 1

2
log (1 − 2ψα(�)), (2.16)

B (φ, ψ; (k − 1)�, k�) = φλ� + ψ
(
α(�)γ 2(�) + β(�)

) +
(
φ
√

� − 2ψα(�)γ (�)
)2

2 (1 − 2ψα(�))
.

(2.17)

Using (2.16)–(2.17), we can take ψ = 0 in (2.3) and verify that the one-step conditional
c.g.f. of yk� corresponds to that of a Gaussian distribution:

Cyk�

(
φ | F(k−1)�

) = φ (r + λhk�)� + φ2

2
hk��. (2.18)

5 Note that various studies (e.g. Christoffersen et al. (2013a) consider an adjustment to the conditional mean
return which is given by the c.g.f. of the GARCH innovations evaluated at

√
hk�. In the Gaussian case, this

implies that λ is replaced by λ − 1/2. However, since this does not affect our theoretical results, we do not
consider this adjustment.
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From Proposition 2.1, the function C(Yk�,h(k+1)�) (φ, ψ | Fl�) has the affine representation
from (2.25) with the multi-step coefficients satisfying the recursions for any l < k:

A (φ, ψ; l�, k�) = A (φ, ψ; (l + 1)�, k�) + φr� + ω(�)B (φ, ψ; (l + 1)�, k�)

−1

2
log (1 − 2α(�)B (φ, ψ; (l + 1)�, k�)). (2.19)

B (φ, ψ; l�, k�) = φλ� + (
α(�)γ 2(�) + β(�)

)
B (φ, ψ; (l + 1)�, k�)

+
(
φ
√

� − 2α(�)γ (�)B (φ, ψ; (l + 1)�, k�)
)2

2 (1 − 2α(�)B (φ, ψ; (l + 1)�, k�))
, (2.20)

together with the terminal conditions A (φ, ψ; k�, k�) = 0 and B (φ, ψ; k�, k�) = ψ ,
for any real-valued φ and ψ . The above recursions can be viewed as generalizations of some
of the well-known results previously obtained for the HN-GARCH model (refer to (2.14)–
(2.15)). Indeed, if we let � = 1 and take φ = 0 in (2.19) and (2.20), we recover the same
recursions for the moment generating function of the log-price process Yk as in Heston and
Nandi (2000a).6 Similarly, if we take ψ = 0 in both (2.19) and (2.20) with � = 1, we
recover the recursions for the moment generating functions of the variance process derived
by Heston and Nandi (2000b).

In order to characterize the risk-neutral dynamics of the asset returns, we first need to
identify the relationship between the market prices of risk, which satisfy the no-arbitrage
constraints. Thus, if we replace the expressions for A and B from (2.16)–(2.17) into (2.13),
we obtain:

η1(�) = −λ − 1

2
+ 2α(�)η2(�)

(
λ + γ (�)√

�

)
. (2.21)

Note that (2.12) is automatically satisfied for any pair (η1(�), η2(�)). The risk-neutral asset
returns dynamics are illustrated in the following corollary.

Corollary 2.1 Suppose that the asset returns follow the affine GARCH dynamics from (2.14)–
(2.15) under P. Then, the risk-neutral dynamics under the variance dependent pricing kernel
from (2.8) are given by:

yk� =
(
r − h∗

k�

2

)
� + √

�

√
h∗
k�ε∗

k�, ε∗
k�

Q∼ N(0, 1), (2.22)

h∗
(k+1)� = ω∗(�) + β(�)h∗

k� + α∗(�)
(
ε∗
k� − q∗(�)

√
h∗
k�

)2
. (2.23)

Here the leverage parameter is defined by q∗(�) = λ∗(�) + γ ∗(�) +
√

�

2
with the risk-

neutral GARCH parameters governing the conditional variance equation defined below:

ω∗(�) = ω(�)

1 − 2α(�)η2(�)
; α∗(�) = α(�)

(1 − 2α(�)η2(�))2
;

α∗(�) = α(�)

(1 − 2α(�)η2(�))2
;

λ∗(�) = λ
√

�(1 − 2α(�)η2(�)); γ ∗(�) = γ (�)(1 − 2α(�)η2(�)).

6 As pointed out by Christoffersen et al. (2013b), the formula for the moment generating function in Heston
and Nandi (2000a) contains some typos. The correct relationship is illustrated in the former paper and is thus
obtained as a special case of our result when � = 1 and φ = 0.
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Proof See Section A.3 in the “Appendix”. ��
When � = 1, the discretized risk-neutral GARCH model from (2.22)–(2.23) reduces to
the model of Christoffersen et al. (2013a).7 We notice that the asset return’s risk-neutral
conditional variance, h∗

k� = Var Q[Yk�|F(k−1)�], is related to the physical one by the
following relationship:

h∗
k� = hk�

1 − 2α(�)η2(�)
. (2.24)

Thus, a positive value for the market price of variance risk, η2(�) > 0, implies that h∗
k� ≥

hk� as α(�) ≥ 0. When η2(�) = 0, the above pricing kernel reduces to the standard
conditional Esscher transform, and thus the above dynamics coincide with those in Heston
and Nandi (2000a).

Since the GARCH dynamics under P and Q have the same form, we can use the results
from Proposition 2.2 and equations (2.19)–(2.20) to characterize the multi-step risk-neutral
c.g.f. of Yk� and h∗

(k+1)�:

CQ(
Yk�,h∗

(k+1)�

) (φ, ψ | Fl�) = A∗ (φ, ψ; l�, k�) + φYl� + B∗ (φ, ψ; l�, k�) h∗
(l+1)�.

(2.25)

Here the coefficients A∗ (φ, ψ; l�, k�) and B∗ (φ, ψ; l�, k�) satisfy the following recur-
sions for all l < k:

A∗ (φ, ψ; l�, k�) = A∗ (φ, ψ; (l + 1)�, k�) + φr� + ω∗(�)B∗ (φ, ψ; (l + 1)�, k�)

−1

2
log

(
1 − 2α∗(�)B∗ (φ, ψ; (l + 1)�, k�)

)
,

B∗ (φ, ψ; l�, k�) = −φ�

2
+ (

α∗(�)(q∗(�))2 + β(�)
)
B∗ (φ, ψ; (l + 1)�, k�)

+
(
φ
√

� − 2α∗(�)q∗(�)B∗ (φ, ψ; (l + 1)�, k�)
)2

2 (1 − 2α∗(�)B∗ (φ, ψ; (l + 1)�, k�))
,

with the terminal conditions A∗ (φ, ψ; k�, k�) = 0 and B∗ (φ, ψ; k�, k�) = ψ , for any
real-valued φ and ψ .

3 Variance swap valuation in affine GARCHmodels

Variance swaps are forward contracts written on the Realized Variance (RV) of an underlying
asset. In this section, we consider the pricing of discretely sampled variance swaps within the
affine GARCH framework and we provide closed-form expressions for the fair strike prices
under the Gaussian innovations specification.

We assume that the variance swap is sampled at the same frequency as the observation
frequency of the underlying GARCHmodel. In this case, the RV over the interval [0, . . . , T ],
which is based on nT sampling points, is defined as the annualized sum of one-period squared
log returns:

7 Note that the pricing kernel used in Christoffersen et al. (2013a) is based on four parameters which are
determined by imposing the standard no-arbitrage conditions. Our pricing kernel contains only two parameters
and the derivation of the risk-neutral dynamics is done using a different approach.
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RV (0, T , nT ) = 1

T

nT∑

k=1

(
log

Sk�
S(k−1)�

)2

= 1

T

nT∑

k=1

(
Yk� − Y(k−1)�

)2
. (3.1)

Since there are no cash exchanges at inception, the fair strike price of the swap at time t = 0,
denoted here by K (0, T , N ), is given by the risk-neutral expectation of the realized variance:

K (0, T , nT ) = EQ [RV (0, T , nT )] . (3.2)

In our case, the risk-neutral measure Q is constructed based on the variance-dependent
kernel in (2.8). In general, depending on the risk-neutral asset returns dynamics, the expec-
tation in (3.2) can be computed using different methods. For example, one can undertake
a direct approach by evaluating the squared return process in (3.1) and calculating its risk-
neutral expectation according to the corresponding dynamics. However, this procedure may
be deemed as less general since the derivations depend heavily on the innovation distribution
and on the risk-neutral conditional variance equation.

A more general approach is based on the methodology proposed by Hong (2004), which
relies on computing the secondmoment bydifferentiating the (conditional) risk-neutral cumu-
lant generating function of Yk� − Y(k−1)�, C

Q
Yk�−Y(k−1)�

(φ | Fl�), for any k = 1, . . . , nT
and l < k, while making use of the well-known relationship between moments and cumu-
lants. This approach is rather general in our affine setting since the multi-step conditional
risk-neutral bivariate cumulant generating function of Yk� and h(k+1)� (or h∗

(k+1)�) is avail-
able in closed-form with coefficients satisfying explicit recursion relations. This can be seen
in the lemma below.

Lemma 3.1 Suppose that the risk-neutral joint c.g.f. of Yk� and h∗
(k+1)�, C

Q(
Yk�,h∗

(k+1)�

)

(φ, ψ | Fl�), is affine in h∗
(l+1)�, with the coefficients A

∗ (φ, ψ; l�, k�) and B∗ (φ, ψ; l�,

k�) satisfying the risk-neutral versions of the recursions in (2.6)–(2.7), for any l < k. Then,
the risk-neutral c.g.f. of Yk� −Y(k−1)� conditional on Fl� has the following affine represen-
tation:

CQ
Yk�−Y(k−1)�

(φ | Fl�) = A∗ (φ, 0; (k − 1)�, k�)

+A∗ (
0, B∗ (φ, 0; (k − 1)�, k�) ; l�, (k − 1)�

)

+B∗ (
0, B∗ (φ, 0; (k − 1)�, k�) ; l�, (k − 1)�

)
h∗

(l+1)�.

Proof See Section A.4 in the “Appendix”. ��
Following the above result, we can now compute the nth order multi-step conditional cumu-
lants of the log-return process Yk� − Y(k−1)�, by evaluating the nth order derivatives of

CQ
Yk�−Y(k−1)�

(φ | Fl�) at φ = 0. Thus, the valuation of the variance swaps reduces to the
computation of the first and second order partial derivatives of the affine coefficients A∗ and
B∗ evaluated at different time points. The key ingredient in such a derivation is provided by
the risk-neutral versions of the recursions in (2.6)–(2.7).

FromLemma 3.1, we canwrite the unconditional (i.e. l = 0) cumulant generating function
of the one-period log-return process yk� as:

CQ
yk� (φ) = A∗ (φ, 0; (k − 1)�, k�) + A∗ (

0, B∗ (φ, 0; (k − 1)�, k�) ; 0, (k − 1)�
)

+B∗ (
0, B∗ (φ, 0; (k − 1)�, k�) ; 0, (k − 1)�

)
h∗

�. (3.3)

Since the nth cumulants of yk� are defined by κ
(n)
yk� := ∂nCQ

yk� (φ) /∂φn |φ=0, we need
to compute the first and second order derivatives of the coefficients from (3.3). For any
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i, j = 0, 1, 2 and k = 1, . . . , nT , we introduce the following useful notations for these
derivatives corresponding to the one-step coefficients:

A∗
i j = ∂ i+ j A∗ (φ, ψ; (k − 1)�, k�)

∂φi∂ψ j
|φ=0,ψ=0,

B∗
i j = ∂ i+ j B∗ (φ, ψ; (k − 1)�, k�)

∂φi∂ψ j
|φ=0,ψ=0 . (3.4)

Note that both A∗
i j and B∗

i j depend on the time step �, but to notationally simplify the final
expressions we omit expressing this dependence. In the Appendix we show how the first and
second order derivatives of the multi-step coefficients from (3.3) can be expressed in terms
of (3.4), so the variance swap price will also depend on these terms. The main result of this
subsection is contained in the following proposition.

Proposition 3.1 Suppose that the risk-neutral joint c.g.f. of Yk� and h∗
(k+1)�, C

Q(
Yk�,h∗

(k+1)�

)

(φ, ψ | Fl�), is affine in h∗
(l+1)�, with the coefficients A

∗ (φ, ψ; l�, k�) and B∗ (φ, ψ; l�,

k�) satisfying the recursions (risk-neutral versions) from (2.6)–(2.7) for any l < k. Then,
the fair strike price of the discretely sampled variance swap defined in (3.2) is given by:

K (0, T , nT ) = nF1 + F2
T

1 − B∗nT
01

1 − B∗
01

+ F3
T

1 − B∗2nT
01

1 − B∗2
01

+
(
F4
T

1 − B∗nT
01

1 − B∗
01

+ F5
T

1 − B∗2nT
01

1 − B∗2
01

)

h∗
� + F6

T

1 − B∗2nT
01

1 − B∗2
01

h∗2
� . (3.5)

Here, the factors F1 − F6 are given below:

F1 = A∗2
10 + A∗

20 + 2A∗
01A

∗
10B

∗
10 + A∗

01B
∗
20

1 − B∗
01

+ A∗2
01B

∗2
10(

1 − B∗
01

)2 + A∗
02B

∗2
10

1 − B∗2
01

+ A∗
01B

∗
02B

∗2
10(

1 − B∗
01

) (
1 − B∗2

01

) , (3.6)

F2 = −2A∗
01A

∗
10B

∗
10 + A∗

01B
∗
20

1 − B∗
01

− 2A∗2
01B

∗2
10(

1 − B∗
01

)2 − A∗
01B

∗
02B

∗2
10

B∗
01

(
1 − B∗

01

)2 , (3.7)

F3 = A∗2
01B

∗2
10(

1 − B∗
01

)2 − A∗
02B

∗2
10

1 − B∗2
01

+ A∗
01B

∗
02B

∗2
10

B∗
01

(
1 − B∗

01

) (
1 − B∗2

01

) , (3.8)

F4 = B∗
20 + 2A∗

10B
∗
10 + B∗2

10

(
B∗
02 + 2A∗

01B
∗
01

)

B∗
01

(
1 − B∗

01

) , (3.9)

F5 = − B∗2
10

(
B∗
02 + 2A∗

01B
∗
01

)

B∗
01

(
1 − B∗

01

) , (3.10)

F6 = B∗2
10 . (3.11)

Proof See Section A.5 in the “Appendix”. ��
We notice that the variance swap fair strike is a quadratic function of h∗

�, whose coeffi-
cients depend both on the GARCH parameters and the time step �. According to the above
result, the variance swap valuation problem thus reduces to identifying and computing the
partial derivatives at φ = ψ = 0 of the one step coefficients A∗ (φ, ψ; (k − 1)�, k�)
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and B∗ (φ, ψ; (k − 1)�, k�) from the affine representation of the bivariate c.g.f. of yk�
and h∗

(k+1)� under Q. This is presented in the following corollary for the HN-GARCH
model:

Corollary 3.1 If the asset price follows the risk-neutral dynamics from (2.22)–(2.23), then
the fair strike price of the discretely sampled variance swap defined in (3.2) is given in (3.5)
with the one-step coefficients given by:

A∗
10 = r�; A∗

20 = 0; B∗
10 = −�

2
; B∗

20 = �,

A∗
01 = ω∗(�) + α∗(�); A∗

02 = 2
(
α∗(�)

)2 ; B∗
01 = d∗(�); B∗

02 = 4
(
α∗(�)

)2 (
q∗(�)

)2
,

(3.12)

where d∗(�) = β(�) + α∗(�)(q∗(�))2 represents the risk-neutral persistence of the
GARCH model.

Proof See Section A.6 in the “Appendix”. ��
The variance swap price for the HN-GARCH model is thus obtained as a special case of

the result in Proposition 3.1 by replacing the one-step coefficients derived in (3.12) into the
general formula (3.5). For verification purposes, we shall also present in the Appendix A.6
an alternative derivation of the strike price for the HN-GARCH model, which consists of
computing (3.2) through a direct evaluation of the risk-neutral expectation.

4 Variance swaps for GARCH diffusion limits and convergence

The aim of this section is to compute the prices of continuously sampled variance swaps based
on the weak diffusion limits of the HN-GARCH model and to investigate the convergence
of the discretely sampled GARCH swap rate to its continuous counterpart.

4.1 The HN-GARCH diffusion limit under the variance dependent pricing kernel

We follow the standard approach in Nelson (1990) to derive the weak limit of the affine
GARCH model under the risk-neutral measure introduced in (2.8). First, we compute the
GARCH weak diffusion limit under the physical measure P as:8

dYt = (r + λht )dt + √
htdW1t , (4.1)

dht = κ(θ − ht )dt + σ
√
htdW2t . (4.2)

HereW1t andW2t are two correlated standard Brownianmotions under P with E[dW1t dW2t ]
= ρdt and ρ = −1. The diffusion limit parameters depend on the GARCH counterparts via
the following relationships:

θ = ω + α

κ
, σ = 2αγ, κ = 1 − β − αγ 2. (4.3)

The resulting affine diffusion limit is of Heston type with perfectly (negatively) correlated
Brownian motions. A similar limit has been obtained in Heston and Nandi (2000a) for

8 In the Appendix, we shall illustrate the proof for the weak limit of the Gaussian GARCH model only under
the risk-neutral measure. The same approach is used under P , and since the proof is even simpler, we omit it
from our presentation.
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Gaussian innovations, although there are significant differences in the parametric constraints,
which we explain in detail below.

The above diffusion coefficients are computed based on the following assumptions we
impose on the GARCH parameters.

ω(�) = ω�; α(�) = α�; γ (�) = γ√
�

; β(�) = 1 − κ� − α(�)γ 2(�). (4.4)

When � = 1 and if we define β := β(1), an inspection of (2.14)–(2.15) shows that these
parameters correspond to those for the dynamics of the Heston and Nandi (2000a) model
sampled at a daily frequency. This observation has been overlooked in that study since
their continuous time limit is computed based on choosing β(�) = 0 (combined with other
specifications for the rest of the parameters) for all frequencies, and this is not consistentwith a
GARCHstructurewhen� = 1.Our approach is therefore different, sinceweconsider another
asymptotic behavior that preserves the GARCH structure at a daily frequency. Although we
use different parametric constraints, our weak diffusion limit is very similar to that in Heston
and Nandi (2000a). The implied diffusion parameters satisfy the standard constraints in the
Heston (1993) model. For instance, the GARCH stationarity constraint implies that κ > 0.
Moreover, σ > 0when the leverage effect γ is positive (this typically holds for most financial
time-series) which allows for a negative correlation between the asset returns and variance.
As shown in Badescu et al. (2017), the sign of the leverage effect is directly related to the
presence of asset bubbles.

Following the same parametric constraints as under P , we derive the risk-neutral GARCH
weak diffusion limit below, and summarize it in the following result.

Proposition 4.1 Suppose that the market price of variance risk does not depend on the sam-
pling frequency, that is, η2(�) = η2. Then, under the parametric constraints in (4.4) for
the HN-GARCH model, the weak diffusion limit of the risk neutral GARCH processes in
(2.22)–(2.23) is given by the following square-root model:

dYt =
(
r − ht

2

)
dt + √

htdW
∗
1t , (4.5)

dht = κ∗(θ∗ − ht )dt + σ
√
htdW

∗
2t . (4.6)

Here W ∗
1t and W ∗

2t are two correlated standard Brownian motions under Q with
E∗[dW ∗

1t dW
∗
2t ] = ρdt and ρ = −1. The variance equation parameters depend on the

GARCH counterparts in the following way:

θ∗ = ω + α

κ∗ , σ = 2αγ, κ∗ = κ − σ

(
λ + 1

2

)
.

Proof See Section A.7 in the “Appendix”. ��
Letting � converge to zero in (2.24), we notice that unlike in the discrete time case, the
continuous-time risk-neutral variance is the same as the physical one. In fact, this can also be
viewed as a consequence of Girsanov’s Theorem applied to the historical dynamics in (4.1)–
(4.2) for amarket price of equity risk (λ + 1/2)

√
ht .Moreover, the variance dependent kernel

parameter η2(�) = η2 does not have any effect on the above continuous-time risk-neutral
dynamics in (4.5)–(4.6), therefore the same limit is also recovered from the GARCH risk-
neutralized dynamics obtained based on the conditional Esscher transform (i.e. η2(�) = 0).
This limit corresponds to that obtained inHeston andNandi (2000a) based on their parametric
conditions.
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Note that the only other scenario which leads to a finite risk-neutral variance, corresponds
to taking a market price of variance risk of the form η2(�) = η2/�.9 In this case, equation
(2.24) implies that h∗

k� = hk�/(1 − αη2), so that the corresponding continuous-time limit
of the risk-neutral variance becomes ht/(1 − αη2). However, the latter relationship would
come into a contradiction with Girsanov’s Principle since the asset returns variance remains
unchanged after the change of measure, and hence the P and Q dynamics of the GARCH
diffusion limits are inconsistent.

4.2 Variance swaps for continuous time limits and convergence results

In this section, we compute the discretely and continuously sampled variance swap fair strike
prices when the underlying follows the above HN-GARCH weak diffusion limit dynamics.

According to awell-known asymptotic result (see e.g. Jacod and Protter (1998) andAnder-
sen et al. (2003)), when the time between observations is small, the sample realized variance
converges in probability to the annualized Quadratic Variation (QV) of the log-price, which,
in our stochastic volatility framework, coincides with the integrated variance. In other words,
for any partition 0 = t0 < · · · < tN = T of the interval [0, T ] with max

i=1,...,N
|ti − ti−1| → 0,

we have:

RV (0, T , N ) := AF

N

N∑

k=1

(
Ytk − Ytk−1

)2 −→ QV (0, T ) := 1

T

T∫

0

htdt . (4.7)

Here AF represents the annualization factor (e.g., if the sampling is performed daily (for
every trading day), then AF = 252). In general, practitioners use the continuous sampling
method in order to approximate the variance swap price when the underlying model is a
diffusion process and this approximation is reasonably accurate if the realized variance is
defined at a daily frequency (see e.g. Broadie and Jain (2008) and Jarrow et. al. (2013), among
others). Our aim here is to show the convergence of the swap rate constructed based on the
RV definition according to the left hand side of (4.7), where (Yk�, h(k+1)�) follows the affine
HN-GARCHmodel, to the variance swap price based on the QV definition according to right
hand side of (4.7), and when (Yt , ht ) follows the diffusion limit of the HN-GARCH process.
This is contained in the following proposition:

Proposition 4.2 The following statements hold:

(i) If the asset prices follow the stochastic volatility risk-neutral dynamics in (4.5)–(4.6),
then the variance swap strike constructed based on the QV is given by:

K̄ (0, T ) := EQ [QV (0, T )] = θ∗ + (
h0 − θ∗) 1 − e−κ∗T

κ∗T
. (4.8)

(ii) Suppose that the parametric constraints in (4.4) are satisfied. Then, as the time step
� approaches zero (or equivalently as n approaches infinity), the fair strike price
K (0, T , nT ), computed according to the specifications in Corollary 3.1, converges to
the corresponding diffusion-based price K̄ (0, T ) stated above.

Proof See Section A.8 in the “Appendix”. ��
9 Indeed, if we take η2(�) = η2/�

δ , with 0 < δ < 1, we recover the same limit as in Proposition 4.1. When
δ > 1, the continuous-time limit of the risk-neutral variance is not well defined.
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The first result in Proposition 4.2 is standard in the variance swap literature. Indeed, under
the model assumptions in part (i), which implies that the asset risk-neutral dynamics follows
a Heston type model with perfectly correlated Brownian motions, the fair strike price for a
variance swap has been already derived in the literature (see e.g. Broadie and Jain (2008)
and Swishchuk (2013) among others), so our result can be viewed as a special case. Part
(ii) establishes the main convergence result of this section for discretely sampled variance
swaps based on the HN-GARCH model, K (0, T , nT ) from (3.5) and coefficients satisfying
(3.12), to the continuously sampled swaps constructed based on the continuous time limit
of the HN-GARCH model, K̄ (0, T ) computed in (4.8). Numerical examples regarding this
convergence result are presented in Sect. 6.

5 Numerical examples

We now present two numerical exercises to support the theoretical results presented in the
previous sections. First, using daily historical returns on the S&P 500 index, we construct the
term structure of the variance swap rates using a rolling window estimation methodology.
Second, using a randomly chosen parameters set from those obtained at the first step, we test
the numerical convergence of the fair strike prices from GARCH to diffusions.

5.1 Term structure of variance swaps

The data set used for the estimation procedure consists of daily closing prices for the S&P
500 index from January 16, 1986 to December 15, 2011. The term structure of the variance
swap rates is constructed according to the following rolling window procedure:

1. Estimate the Gaussian GARCH model in (2.14)–(2.15) at daily frequency (i.e. � = 1)
usingMaximum Likelihood Estimation (MLE) based on the first 2520 observations from
the above sample, namely from January 16, 1986 to January 4, 1996:

yk = r + λhk + √
hkεk, εk

P∼ N(0, 1), (5.1)

hk+1 = ω + βhk + α
(
εk − γ

√
hk

)2
. (5.2)

2. Based on the parameters estimated at Step 1, compute the variance swap prices using the
formulas in Proposition 3.1.

3. Shift by threemonths the estimation window, that is, drop the first threemonths of sample
points from the current sample and add the same amount of daily returns starting from
the remaining data set. Repeat the same estimation and sampling procedure until the end
of the data set is reached.

Thus, we end up with 64 estimation exercises that yield 64 corresponding parameter sets,
the last fitted period being December 13, 2001 - December 15, 2011. The evolution of the
estimated GARCH parameters is illustrated in Fig. 1. The estimated GARCH parameters are
in the same range as those typically reported in various study for theHN-GARCHmodels (see
e.g. Christoffersen et al. (2013a) among others). For example, the time series are persistent as
β ranges from 0.84 to 0.96, while the market risk premium parameter λ takes smaller values
when the time series contain financial crisis periods.

For each parameter set, we compute the corresponding variance swap prices for maturities
ranging from 1 to 30 months. Since the market price of variance risk parameter η2 from the
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Fig. 1 HN-GARCH parameters estimated using a rolling window of 2520 daily closing prices for the S&P 500
index recorded over the period January 16, 1986 to December 15, 2011. The first exercise uses daily returns
from January 16, 1986 to January 4, 1996, and the rolling window is constructed by dropping the first three
months of sample points from the current sample and adding the same amount of daily returns starting from
the remaining data set for a total of 64 estimations

pricing kernel (2.8) cannot be estimated from historical returns, and no other data sources
have been used for this exercise, we investigate the behavior of the variance swap term struc-
ture with respect to this parameter. More specifically, we plot the fair strikes corresponding
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to market prices of variance risks computed for three levels of risk-neutral to physical con-
ditional variance ratios, namely h∗

k/hk = 1, 1.25, 1.5. Note that the first scenario h∗
k/hk = 1

corresponds to the case of the conditional Esscher measure change since η2 = 0 (see e.g.
equation (2.24) for � = 1). Results are illustrated in Fig. 2.

We notice that variance swaps exhibit some standard characteristics observed in real data.
For example, in all three panels of Fig. 2, the rates are volatile, mean-reverting, with volatility
clustering and spikes around the time of the financial crisis in 2008. Furthermore, as in Aït-
Sahalia et al. (2015), we notice that the slope of the VS term structure, which is measured
as the difference between the largest and the smallest term rates, are negatively correlated
to the current volatility level. In particular, the VS exhibit a pronounced downward slope
during highly volatile periods such as those in 2001–2002 and 2008. The amplitude of the
term structure depends strongly on the variance risk premium parameter, η2, in the pricing
kernel. Panel (a) suggests that the smallest values for the fair strike prices correspond to the
conditional Esscher transform, which corresponds to η2 = 0. Panels (b) and (c) indicate
that the VS term structure exhibit larger spikes for greater positive values of η2, which also
corresponds to having a U-shaped variance dependent pricing kernel. We emphasize that, in
general, the variance risk premium parameter η2 should be estimated from over the counter
observed quotes of variance swap prices.

5.2 Convergence of variance swap prices

The numerical convergence of the GARCH-based variance swap prices constructed using
the RV definition to the continuous time counterparts is illustrated using the following
parametric specifications, which are taken from the last estimation exercise in the pre-
vious subsection (i.e. using daily historical returns from December 13, 2001–December
15, 2011). Therefore, we assume that the “daily” values of the GARCH parameters are:
r = −9.5395×10−4,ω = 1.7244×10−10, α = 3.3559×10−6, β = 0.8703, γ = 180.3003
and λ = 5.5083. The values for the continuous-time diffusion limit parameters under P
follow from (4.3) and the time-dependent GARCH parameters are related to the above
daily values via (4.4). As in the previous exercise, we consider three values for the vari-
ance dependent pricing kernel parameter, which correspond to the same three levels of
daily risk-neutral to physical conditional variance ratio, η2 = 0, η2 = 2.9798 × 104 and
η2 = 4.9663 × 104, respectively. The discrete-time variance swaps are computed for 11
values of intra-daily points, so that n = 1, 2, 22, . . . , 210 and maturities ranging from 1
to 37 months. In the last line, we report the fair strike prices for the continuous variance
swaps based on the GARCH diffusion limit. The results are reported in Tables 1, 2 and
3.

We notice that the discrete VS rates converge reasonably fast to the continuously sampled
ones, with the largest differences between the two prices being recorded for the quantities
computed at GARCH daily frequency, � = 1. This difference is larger when η2 increases,
and this is a direct consequence of the fact that the continuous-time variance swap does not
depend on the pricing kernel parameter.Moreover, the GARCH basedVS rates depend on the
starting value of the return process y0 (or on the innovation shock ε0), while the continuous
counterpart does not have an explicit dependence on it. As� decreases, the influence of both
η2 and y0 disappear, so the convergence is numerically established.

Another interesting aspect is that the convergence is realized from both below and above.
For example, in Table 1, for the first three maturities, the convergence is from below, and
for the remaining columns the convergence is from above. This justifies that the discretely
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(a) Conditional Esscher transform with h∗
k = hk

(b) Variance dependent pricing kernel with h∗
k = 1.25hk

(c) Variance dependent pricing kernel with h∗
k = 1.5hk

Fig. 2 Term structure of the variance swaps implied by daily historical returns on S&P 500 from January
16, 1986 to December 15, 2011. The fair strike prices are computed based on parameters estimated by MLE
using a rolling window of 2520 observations. Each panel corresponds to the following pricing kernels: panel
a corresponds to the Esscher transform obtained for η2 = 0 and panels b and c correspond to the variance
dependent pricing kernel obtained for values of η2 which make h∗

k = 1.25hk and h∗
k = 1.5hk , respectively.

The variance swap prices are annualized and illustrated in variance percentage units. Maturity figures are in
months
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Table 1 Convergence of affine Gaussian GARCH based VS prices computed using the general formula in
Proposition 3.1 and the specifications in Corollary 3.12 via the conditional Esscher transform (η2 = 0)

Variance swap rates for GARCH models and diffusion limit (Esscher case; h∗/h = 1)

Intraday periods Maturity in months

1 5 9 13 17 21 25 29 33 37

1 2.929 2.778 2.700 2.656 2.630 2.612 2.600 2.592 2.585 2.580

2 2.955 2.788 2.701 2.652 2.623 2.603 2.590 2.580 2.573 2.567

4 2.970 2.793 2.702 2.651 2.620 2.599 2.585 2.575 2.567 2.561

8 2.979 2.797 2.703 2.650 2.618 2.597 2.583 2.572 2.564 2.558

16 2.984 2.799 2.704 2.650 2.618 2.597 2.582 2.571 2.563 2.557

32 2.987 2.801 2.704 2.651 2.618 2.596 2.582 2.571 2.563 2.556

64 2.989 2.802 2.705 2.651 2.618 2.596 2.581 2.571 2.562 2.556

128 2.990 2.802 2.705 2.651 2.618 2.596 2.581 2.571 2.562 2.556

256 2.991 2.803 2.706 2.651 2.618 2.596 2.581 2.571 2.562 2.556

512 2.991 2.803 2.706 2.651 2.618 2.597 2.582 2.571 2.562 2.556

1024 2.992 2.803 2.706 2.651 2.618 2.597 2.582 2.571 2.562 2.556

Diffusion limit prices 2.992 2.804 2.706 2.652 2.618 2.597 2.582 2.571 2.562 2.556

These prices are calculated for different values ofn = 1, 2, . . . , 210 andmaturities ranging from1 to 37months.
The continuously sampled VS prices based on the GARCH diffusion limit in Proposition 4.2 are stated in the
last line of the table. Parameters and starting values used in the computations are given in Sect. 5.2

Table 2 Convergence of affine Gaussian GARCH based VS prices computed using the general formula in
Proposition 3.1 and the specifications in Corollary 3.12 via the conditional Esscher transform (η2 = 0).

Variance swap rates for GARCH models and diffusion limit (h∗/h = 1.25)

Intraday periods Maturity in months

1 5 9 13 17 21 25 29 33 37

1 3.761 3.854 3.902 3.930 3.946 3.957 3.965 3.970 3.975 3.978

2 3.324 3.248 3.208 3.186 3.172 3.164 3.157 3.153 3.150 3.147

4 3.145 3.008 2.937 2.897 2.873 2.857 2.846 2.838 2.832 2.827

8 3.064 2.901 2.816 2.769 2.740 2.721 2.708 2.699 2.692 2.686

16 3.026 2.850 2.759 2.709 2.678 2.658 2.644 2.633 2.626 2.619

32 3.008 2.826 2.732 2.679 2.647 2.627 2.612 2.601 2.593 2.587

64 2.999 2.814 2.719 2.665 2.633 2.611 2.597 2.586 2.578 2.571

128 2.995 2.809 2.712 2.658 2.625 2.604 2.589 2.578 2.570 2.563

256 2.993 2.806 2.709 2.655 2.622 2.600 2.585 2.574 2.566 2.560

512 2.992 2.805 2.707 2.653 2.620 2.598 2.583 2.572 2.564 2.558

1024 2.992 2.804 2.707 2.652 2.619 2.597 2.582 2.572 2.563 2.557

Diffusion limit prices 2.992 2.804 2.706 2.652 2.618 2.597 2.582 2.571 2.562 2.556

These prices are calculated for different values ofn = 1, 2, . . . , 210 andmaturities ranging from1 to 37months.
The continuously sampled VS prices based on the GARCH diffusion limit in Proposition 4.2 are stated in the
last line of the table. Parameters and starting values used in the computations are given in Sect. 5.2
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Table 3 Convergence of affine Gaussian GARCH based VS prices computed using the general formula in
Proposition 3.1 and the specifications in Corollary 3.12 via the conditional Esscher transform (η2 = 0).

Variance swap rates for GARCH models and diffusion limit (h∗/h = 1.5)

Intraday periods Maturity in months

1 5 9 13 17 21 25 29 33 37

1 4.634 5.087 5.325 5.460 5.542 5.596 5.633 5.661 5.681 5.698

2 3.626 3.638 3.645 3.649 3.651 3.652 3.654 3.654 3.655 3.655

4 3.273 3.168 3.114 3.083 3.065 3.053 3.044 3.038 3.033 3.030

8 3.123 2.974 2.896 2.853 2.827 2.809 2.798 2.789 2.782 2.777

16 3.054 2.885 2.798 2.749 2.719 2.699 2.686 2.676 2.668 2.663

32 3.022 2.843 2.751 2.699 2.667 2.647 2.633 2.622 2.614 2.608

64 3.006 2.823 2.728 2.675 2.642 2.621 2.607 2.596 2.588 2.582

128 2.998 2.813 2.717 2.663 2.630 2.609 2.594 2.583 2.575 2.569

256 2.995 2.808 2.711 2.657 2.624 2.603 2.588 2.577 2.569 2.562

512 2.993 2.806 2.709 2.654 2.621 2.600 2.585 2.574 2.565 2.559

1024 2.993 2.805 2.707 2.653 2.620 2.598 2.583 2.572 2.564 2.557

Diffusion limit prices 2.992 2.804 2.706 2.652 2.618 2.597 2.582 2.571 2.562 2.556

These prices are calculated for different values ofn = 1, 2, . . . , 210 andmaturities ranging from1 to 37months.
The continuously sampled VS prices based on the GARCH diffusion limit in Proposition 4.2 are stated in the
last line of the table. Parameters and starting values used in the computations are given in Sect. 5.2

sampled variance swap strikes may not always be higher than the continuously sampled
variance swap strikes. This is consistent with the findings of Bernard and Cui (2014), where
they obtain similar numerical evidence for the continuous-time stochastic volatility models.
In Griessler and Keller-Ressel (2014), the following “Convex Order Conjecture” is proposed
on page 3 of their paper:

E [ f (RV )] ≥ E [ f (QV )] , (5.3)

for all convex functions f , i.e. realized variance dominates quadratic variation in convex
order. Note that f (x) = x is also in general a convex function, thus in order to propose a
counterexample to this convex order conjecture, it is sufficient to seek counterexamples by
comparing the fair strikes of discretely sampled and continuously sampled variance swaps.
Bernard and Cui (2014) proposed numerical counterexamples showing that the discrete fair
strikes can sometimes be lower than the continuous fair strikes and the convergence is from
below. See also the additional discussions on page 17 of Griessler and Keller-Ressel (2014).
Note that previous numerical counterexamples in the literature are all based on continu-
ous time stochastic processes. Thus the numerical observations here for the HN-GARCH
model provides a new class of numerical counterexamples based on discrete-time stochastic
processes.

6 Conclusion

In this paper,we develop a general valuation framework for discretely sampled variance swaps
in a general class of affineGARCHmodels. Using a variance dependent pricing kernel, which
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allows for an affine representation for the multi-step joint conditional cumulant generating
function of the log-price and variance processes with coefficients satisfying general recursion
relationships, we derive explicit solutions for the fair strike price of discrete-time variance
swaps constructed using the standard realized volatility definition. The resulting expression
depends only on the contract maturity and on the first and second order partial derivatives
of the coefficients in the one-step joint cumulant generating function. For the Gaussian case,
which reduces to the standard HN-GARCH model, we provide a direct derivation for the
variance swap price which coincides with the expression implied by the general methodology
that we proposed for any affine GARCH model. Using the standard asymptotic conditions
in Nelson (1990) we derive the continuous-time limit of the HN-GARCH model under the
proposed variance dependent pricing kernel andwe obtain the continuously sampled variance
swap strike price using this limit. Finally, we establish the convergence of the GARCH-
based discrete-time swap prices to this continuously sampled counterpart. We provide two
numerical studies in which we analyze the term structure of the variance swaps under the
HN-GARCH model implied by the historical asset returns on the S&P 500 index and we
numerically test the theoretical convergence results. Interesting potential future research
could be the derivation of analytical formulas for affine GARCH models or other volatility
derivatives that exhibit a nonlinear dependence on the realized volatility, e.g. call options on
the realized volatility.

Acknowledgements AB and JPO thank the hospitality of the Centre Interfacultaire Bernoulli of the Ecole
Polytechnique Fédérale de Lausanne during the program “Stochastic Dynamical Models in Mathematical
Finance, Econometrics, and Actuarial Sciences” that made possible the collaboration that lead to some of the
results included in this paper. AB would like to thank NSERC for its continuing support.

A Appendix

A.1 Proof of Proposition 2.1

We let l < k be arbitrarily chosen and evaluate the multi-step conditional joint c.g.f. of(
Yk�, h(k+1)�

)
using the law of iterated expectations:

C(Yk�,h(k+1)�) (φ, ψ | Fl�) = log EP [
exp

(
φYk� + ψh(k+1)�

) | Fl�
]

= log EP
[
EP [

exp
(
φYk� + ψh(k+1)�

) | F(l+1)�
] | Fl�

]

= A (φ, ψ; (l + 1)�, k�)

+C(Y(l+1)�,h(l+2)�) (φ, B (φ, ψ; (l + 1)�, k�) | Fl�) .

Replacing the last term with its expression in (2.4), we obtain the required affine
representation in (2.25) where the coefficients A (φ, ψ; l�, k�) and B (φ, ψ; l�, k�)

satisfy the recursions (2.6)–(2.7). The terminal conditions A (φ, ψ; k�, k�) = 0 and
B (φ, ψ; k�, k�) = ψ , for any real φ and ψ , follows immediately by replacing l = k
in the above equation. ��
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A.2 Proof of Proposition 2.2

We start by evaluating the joint c.g.f. of
(
yk�, h(k+1)�

)
conditional on F(k−1)�. We have:

CQ
(yk�,h(k+1)�)

(
φ,ψ | F(k−1)�

)

= log EQ [
exp

(
φyk� + ψh(k+1)�

) | F(k−1)�
]

= log EP [
exp

(
φyk� + ψh(k+1)� + η1(�)yk� + η2(�)h(k+1)�

− C(yk�,h(k+1)�)

(
η1(�), η2(�) | F(k−1)�

)) | F(k−1)�

]

= C(yk�,h(k+1)�)

(
φ + η1(�),ψ + η2(�) | F(k−1)�

)

−C(yk�,h(k+1)�)

(
η1(�), η2(�) | F(k−1)�

)
.

Thus, we can write:

CQ
(yk�,h(k+1)�)

(
φ,ψ | F(k−1)�

) = AQ (φ, ψ; (k − 1)�, k�) + BQ (φ, ψ; (k − 1)�, k�) hk�,

where AQ (φ, ψ; l�, k�) and BQ (φ, ψ; l�, k�) are given in (2.10)–(2.11). The first no-
arbitrage constraint is equivalent to the fact that Q is awell defined probabilitymeasure,which
in our case is automatically verified sinceCQ

(yk�,h(k+1)�)

(
0, 0 | F(k−1)�

) = 0. The second no-

arbitrage constraint ensures that the discounted asset price is a martingale under Q, which is
equivalent to EQ

[
exp (yk�) | F(k−1)�

] = exp (r�) for any k = 1, · · · , nT . Re-writing this

using the joint c.g.f. specification, this is equivalent to CQ
(yk�,h(k+1)�)

(
1, 0 | F(k−1)�

) = r�.

Using (2.10)-(2.11), this condition implies that η1(�) and η2(�) satisfy the no-arbitrage
constraints (2.12)–(2.13). ��

A.3 Proof of Corollary 2.1

We notice that the first no-arbitrage constraint (2.12) is automatically satisfied for any η1(�)

and η2(�0), while the second constraint (2.13) leads to:

λ�+
(
(1 + η1(�))

√
� − 2α(�)γ (�)η2(�)

)2

2 (1 − 2α(�)η2(�))
−

(
η1(�)

√
� − 2α(�)γ (�)η2(�)

)2

2 (1 − 2α(�)η2(�))
= 0.

After some algebraic manipulations we can express the market price of equity risk as a
function of the market price of variance risk as in (2.21).

Next, using the result from Proposition 2.2, we derive the conditional c.g.f. of the asset
returns under Q:

CQ
yk�

(
φ | F(k−1)�

) = CQ
(yk�,h(k+1)�)

(
φ, 0 | F(k−1)�

) = AQ (φ, 0; (k − 1)�, k�)

+BQ (φ, 0; (k − 1)�, k�) hk�

= φr�+
(

φλ�+φ2� + 2φη1(�)� − 4φα(�)γ (�)η2(�)
√

�

2 (1 − 2α(�)η2(�))

)

hk�

= φ

(
r − hk�

2 (1 − 2α(�)η2(�))

)
� + φ2 hk�

2 (1 − 2α(�)η2(�))
�.
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If we denote h∗
k� = hk�

2 (1 − 2α(�)η2(�))
, the above equation implies that yk� |F(k−1)�

Q∼

N
((

r − h∗
k�

2

)
�, h∗

k��

)
. Thus, we can write the asset returns dynamics as in (2.22):

yk� =
(
r − h∗

k�

2

)
� + √

�

√
h∗
k�ε∗

k�, ε∗
k�

Q∼ N(0, 1).

From (2.14) and (2.22), we express the risk-neutral innovations in terms of the physical one
as:

εk� = 1√
�

√
hk�

(√
�

√
h∗
k�ε∗

k� − λhk�� − h∗
k�

2
�

)
.

Multiplying the conditional variance equation (2.15) by 1/ (1 − 2α(�)η2(�)), and replacing
the GARCH innovation process εk� by the above expression, we obtain the risk-neutral
dynamics from (2.23):

h∗
(k+1)� = ω∗(�) + β(�)h∗

k� + α∗(�)
(
ε∗
k� − q∗(�)

√
h∗
k�

)2
.

Note that the risk-neutral parameters are those illustrated in Corollary 2.1. ��

A.4 Proof of Lemma 3.1

For any k > l, we evaluate the multi-step c.g.f. of Yk� − Y(k−1)� given the filtration Fl�:

CQ
Yk�−Y(k−1)�

(φ | Fl�) = log EQ [
exp

(
φ

(
Yk� − Y(k−1)�

)) | Fl�
]

= log EQ
[
exp

(−φY(k−1)�
)
EQ [

exp (φYk�) | F(k−1)�
] | Fl�

]

= log EQ

[

exp

(

−φY(k−1)� + CQ(
Yk�,h∗

(k+1)�

)
(
φ, 0 | F(k−1)�

)
)

| Fl�

]

= log EQ [
exp

(
A∗ (φ, 0; (k − 1)�, k�) + B∗ (φ, 0; (k − 1)�, k�) h∗

k�

) | Fl�
]

= A∗ (φ, 0; (k − 1)�, k�) + CQ
(Y(k−1)�,h∗

k�)

(
0, B∗ (φ, 0; (k − 1)�, k�) | Fl�

)
.

Thus, we have the following affine representation:

CQ
Yk�−Y(k−1)�

(φ | Fl�) = A∗ (φ, 0; (k − 1)�, k�)

+A∗ (
0, B∗ (φ, 0; (k − 1)�, k�) ; l�, (k − 1)�

)

+B∗ (
0, B∗ (φ, 0; (k − 1)�, k�) ; l�, (k − 1)�

)
h∗

(l+1)�.

��
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A.5 Proof of Proposition 3.1

Using (3.3) and the notations from (3.4), we express the first and second order cumulants of
the one-step return process yk� in the following way:

κ(1)
yk� = A∗

10 + B∗
10

(
∂A∗ (0, ψ; 0, (k − 1)�)

∂ψ
|ψ=0 +∂B∗ (0, ψ; 0, (k − 1)�)

∂ψ
|ψ=0 h

∗
�

)
,

(A.1)

κ(2)
yk� = A∗

20 + B∗
20

(
∂A∗ (0, ψ; 0, (k − 1)�)

∂ψ
|ψ=0 +∂B∗ (0, ψ; 0, (k − 1)�)

∂ψ
|ψ=0 h

∗
�

)

+B∗2
10

(
∂2A∗ (0, ψ; 0, (k − 1)�)

∂ψ2 |ψ=0 +∂2B∗ (0, ψ; 0, (k − 1)�)

∂ψ2 |ψ=0 h
∗
�

)
.

(A.2)

We have used the fact that B∗ (0, 0; l�, k�) = 0, for any l < k. Thus, in order to evaluate
the above expressions, we only need to compute the first and second order derivatives of the
multi-step coefficients A∗ (0, ψ; 0, (k − 1)�) and B∗ (0, ψ; 0, (k − 1)�). This is illustrated
below more generally for any time points l� and k� with l < k.

First, following (2.6)–(2.7), we recall the risk-neutral recursions:

A∗ (0, ψ; l�, k�) = A∗ (0, ψ; (l + 1)�, k�)

+A∗ (0, B (0, ψ; (l + 1)�, k�) ; l�, (l + 1)�) . (A.3)

B∗ (0, ψ; l�, k�) = B∗ (
0, B∗ (0, ψ; (l + 1)�, k�) ; l�, (l + 1)�

)
, (A.4)

with the terminal conditions A (0, ψ; k�, k�) = 0 and B (0, ψ; k�, k�) = ψ , for any real
ψ .

Taking the first derivative of (A.4) with respect to ψ and we evaluate it at ψ = 0, we
obtain:

∂B∗ (0, ψ; l�, k�)

∂ψ
|ψ=0= B∗

01
∂B∗ (0, ψ; (l + 1)�, k�)

∂ψ
|ψ=0 . (A.5)

Solving (A.5) subject to the terminal constraint
∂B∗ (0, ψ; k�, k�)

∂ψ
|ψ=0= 1, we obtain

the following solution:
∂B∗ (0, ψ; l�, k�)

∂ψ
|ψ=0= B∗k−l

01 . (A.6)

Similarly, taking the first derivative of (A.3) with respect to ψ and evaluating it at ψ = 0,
we have:

∂A∗ (0, ψ; l�, k�)

∂ψ
|ψ=0= ∂A∗ (0, ψ; (l + 1)�, k�)

∂ψ
|ψ=0

+A∗
01

∂B∗ (0, ψ; (l + 1)�, k�)

∂ψ
|ψ=0 . (A.7)

Solving (A.7) subject to the terminal constraint
∂A∗ (0, ψ; k�, k�)

∂ψ
|ψ=0= 0, we obtain

the following solution:

∂A∗ (0, ψ; l�, k�)

∂ψ
|ψ=0= A∗

01
1 − B∗k−l

01

1 − B∗
01

. (A.8)
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We proceed in a similar fashion for the second order derivatives. From equation (A.4), we
have:

∂2B∗ (0, ψ; l�, k�)

∂ψ2 |ψ=0 = B∗
01

∂2B∗ (0, ψ; (l + 1)�, k�)

∂ψ2 |ψ=0

+B∗
02

(
∂B∗ (0, ψ; (l + 1)�, k�)

∂ψ
|ψ=0

)2

. (A.9)

Solving (A.9) subject to the terminal constraint
∂2B∗ (0, ψ; k�, k�)

∂ψ2 |ψ=0= 0, we obtain

the following solution:

∂2B∗ (0, ψ; l�, k�)

∂ψ2 |ψ=0= B∗
02B

∗k−l−1
01

1 − B∗k−l
01

1 − B∗
01

. (A.10)

Finally from equation (A.3) we have:

∂2A∗ (0, ψ; l�, k�)

∂ψ2 |ψ=0 = ∂2A∗ (0, ψ; (l + 1)�, k�)

∂ψ2 |ψ=0

+A∗
01

∂2B∗ (0, ψ; (l + 1)�, k�)

∂ψ2 |ψ=0

+A∗
02

(
∂B∗ (0, ψ; (l + 1)�, k�)

∂ψ
|ψ=0

)2

(A.11)

Equation (A.11), together with its terminal condition
∂2A∗ (0, ψ; k�, k�)

∂ψ2 |ψ=0= 0, leads

to the following solution:

∂2B∗ (0, ψ; l�, k�)

∂ψ2 |ψ=0 = A∗
02
1 − B∗2(k−l)

01

1 − B∗2
01

+ A∗
01B

∗
02

B∗
01

(
1 − B∗

01

)

(
1 − B∗k−l

01

1 − B∗
01

− 1 − B∗2(k−l)
01

1 − B∗2
01

)

. (A.12)

Replacing (A.6), (A.8), (A.10) and (A.12) with l → 0 and k → k − 1 into the cumulant
expressions from (A.1)–(A.2), and after some algebraic manipulations, we can express the
variance swap strike price as:

K (0, T , nT ) = EQ

[
1

T

nT∑

k=1

(
Yk� − Y(k−1)�

)2
]

= 1

T

nT∑

k=1

((
κ(1)
yk�

)2 + κ(2)
yk�

)

= nF1 + F2
T

1 − B∗nT
01

1 − B∗
01

+ F3
T

1 − B∗2nT
01

1 − B∗2
01

+
(
F4
T

1 − B∗nT
01

1 − B∗
01

+ F5
T

1 − B∗2nT
01

1 − B∗2
01

)

h∗
�

+ F6
T

1 − B∗2nT
01

1 − B∗2
01

h∗2
� .

Here the factors F1 through F6 are those defined in (3.6)–(3.11). ��
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A.6 Proof of Corollary 3.1

The risk-neutral dynamics of the HN model in Corollary 2.1 imply the following one-step
ahead coefficients in the affine representation:

A∗ (φ, ψ; l�, (l + 1)�) = φr� + ψω∗(�) − 1

2
log

(
1 − 2ψα∗(�)

)
,

B∗ (φ, ψ; l�, (l + 1)�) = −φ�

2
+ ψ

(
α∗(�)(q∗(�))2 + β(�)

)

+
(
φ
√

� − 2ψα∗(�)q∗(�)
)2

2 (1 − 2ψα∗(�))
,

for any l = 0, . . . , nT − 1. Taking the first and second order partial derivatives of the above
with respect to φ and ψ at (0, 0), and using the notations from (A.13), we easily obtain the
expressions from (3.12). The variance swap price expression in the Heston and Nandi case
follows by replacing these coefficients into the general formula (3.5). ��

Alternative derivation of the variance swap price for the HN model First, we introduce
several useful notations:

m∗(�) = ω∗(�) + α∗(�)

1 − d∗(�)
; b∗(�) = 2

(
α∗(�)

)2 + (
m∗(�)

)2 (
1 − d∗(�)

)2 ;

c∗(�) = 4
(
α∗(�)

)2 (
q∗(�)

)2 + 2m∗(�)d∗(�)
(
1 − d∗(�)

)
. (A.13)

From (2.22), we have:

EQ
[(

Y (n)
k� − Y (n)

(k−1)�

)2] = r2�2 + �(1 − r�)EQ [
h∗
k�

] + �2

4
EQ [

(h∗
k�)2

]
.

(A.14)

Thus, our goal reduces to computing the first two unconditional moments of h∗
k�. Taking

expectations on both sides of (2.23), we obtain:

EQ
[
h∗

(k+1)�

]
= ω∗(�) + α∗(�) + (

α∗(�)q∗(�)2 + β(�)
)
EQ [

h∗
k�

]
. (A.15)

Solving (A.15) recursively and using the notations from (A.13), we get:

EQ[h∗
k�] = (d∗(�))k−1(h∗

� − m∗(�)) + m∗(�). (A.16)

Next, we square both sides of (2.23) and we have:

h∗2
(k+1)� = (ω∗(�) + β(�)h∗

k�)2 + (α∗(�))2(ε∗
k� − q∗(�)

√
h∗
k�)4

+2(ω∗(�) + β(�)h∗
k�)α∗(�)(ε∗

k� − q∗(�)

√
h∗
k�)2.

Taking the expectation on both sides of the above we obtain the following recursion:

EQ[h∗2
(k+1)�] = (ω∗(�))2 + 3(α∗(�))2 + 2α∗(�)ω∗(�)

+ (
2ω∗(�)β(�) + 6(α∗(�))2(q∗(�))2

+2α∗(�)(β(�) + ω∗(�)(q∗(�))2)
)
EQ [

h∗
k�

]

+ (
β(�) + α∗(�)(q∗(�))2

)2
EQ [

h∗2
k�

]
. (A.17)
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Denoting the sum of the first two terms of the right hand side of (A.17) by Ik(�), and using
the notations from (A.13), we obtain a simplified recursion for the unconditional second
moment:

EQ[h∗2
(k+1)�] = Ik(�) + (

d∗(�)
)2 EQ [

h∗2
k�

]
. (A.18)

Here, the intermediate term Ik(�) is given by:

Ik(�) = b∗(�) + c∗(�)EQ [
h∗
k�

] = b∗(�) + c∗(�)m∗(�) + c∗(�)
(
d∗(�)

)k−1

×(h∗
� − m∗(�)).

Solving (A.18) recursively we have:

EQ[h∗2
k�] =

k−1∑

j=1

(
d∗(�)

)2( j−1)
Ik− j (�) + (

d∗(�)
)2(k−1)

h∗2
�

= (b∗(�) + c∗(�)m∗(�))
1 − (d∗(�))2(k−1)

1 − (d∗(�))2

− c∗(�)m∗(�)
(d∗(�))k−2 − (d∗(�))2k−3

1 − d∗(�)

+ c∗(�)
(d∗(�))k−2 − (d∗(�))2k−3

1 − d∗(�)
h∗

� + (
d∗(�)

)2(k−1)
h∗2

� . (A.19)

Replacing (A.16) and (A.19) into (A.14), we obtain the following quadratic expression (as a
function of h∗

�):

EQ
[(

Y (n)
k� − Y (n)

(k−1)�

)2] = r2�2 + �(1 − r�)m∗(�)
(
1 − (

(d∗(�)
)k−1

)

+�2b∗(�)

4

1 − (d∗(�))2(k−1)

1 − (d∗(�))2

+ �2c∗(�)m∗(�)

4

(
1 − (d∗(�))2(k−1)

1 − (d∗(�))2
− (d∗(�))k−2 − (d∗(�))2k−3

1 − d∗(�)

)

+
(

�(1 − r�)
(
d∗(�)

)k−1 + �2c∗(�)

4

(d∗(�))k−2 − (d∗(�))2k−3

1 − d∗(�)

)

h∗
�

+�2

4

(
d∗(�)

)2(k−1)
h∗2

� .

It now follows that the variance swap price is given by:

K (n)
(0,T ,nT ) = 1

T

nT∑

k=1

EQ
[(

Y (n)
k� − Y (n)

(k−1)�

)2] = ξ∗
0 (�) + ξ∗

1 (�)h∗
� + ξ∗

2 (�)h∗2
� , (A.20)
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where the coefficients ξ∗
0 (�), ξ∗

1 (�) and ξ∗
2 (�) are given by:

ξ∗
0 (�) = r2� + (1 − r�)m∗(�) − �(1 − r�)m∗(�)

T

1 − (d∗(�))nT

1 − d∗(�)

+ �(b∗(�) + c∗(�)m∗(�))

4
(
1 − (d∗(�))2

)

(

1 − �

T

1 − (d∗(�))2nT

1 − (d∗(�))2

)

− �2c∗(�)m∗(�)

4Td∗(�) (1 − d∗(�))

(
1 − (d∗(�))nT

1 − d∗(�)
− 1 − (d∗(�))2nT

1 − (d∗(�))2

)

,

ξ∗
1 (�) = �(1 − r�)

T

1 − (d∗(�))nT

1 − d∗(�)

+ �2c∗(�)

4Td∗(�) (1 − d∗(�))

(
1 − (d∗(�))nT

1 − d∗(�)
− 1 − (d∗(�))2nT

1 − (d∗(�))2

)

,

ξ∗
2 (�) = �2

4T

1 − (d∗(�))2nT

1 − (d∗(�))2
.

It is not difficult, although tedious, to show that the above formula and the more general
variance swap price in (3.5) coincide in the case of the HN model. ��

A.7 Proof of Proposition 4.1

We use the weak convergence theorem of Markov processes to diffusions (see e.g. Theorem
12.1 on page 314 of Francq andZakoian (2011)) in order to compute the drift and the diffusion
coefficients of the following risk-neutral limiting process:

dXt = a(Xt )dt + b(Xt )dW∗
t . (A.21)

Here Xt = (Yt , ht )T and W∗
t = (

W ∗
1t ,W

∗
2t

)T , with W ∗
1t and W ∗

2t being two independent
standard Brownian motions under Q.

Using the relationships between moments and cumulants, together with the coefficients
derived in Corollary 3.1, we evaluate the first and second limiting moments of Yk� and
h∗

(k+1)� under Q, conditional on the filtration Fh
(k−1)� := F(k−1)�

⋃ {hk� = ht }. We have:

lim
�→0

1

�
E∗ [

�Yk�
∣∣∣Fh

(k−1)�

]
= lim

�→0

1

�

(
A∗
10 + B∗

10h
∗
k�

) = lim
�→0

1

�

(
r� − �

2
h∗
k�

)

= r − 1

2
ht .

lim
�→0

1

�
E∗ [

�h∗
(k+1)�

∣∣∣Fh
(k−1)�

]
= lim

�→0

1

�

(
A∗
01 + (

B∗
01 − 1

)
h∗
k�

)

= lim
�→0

1

�

(
ω∗(�) + α∗(�) − (

1 − d∗(�)
)
h∗
k�

)

= ω + α −
(
k − σ

(
λ + 1

2

))
ht = κ∗(θ∗ − ht ).

Thus, the the drift term of the limiting diffusion is given by:

a(Yt , ht ) =
(

r − ht
2

κ∗(θ∗ − ht )

)
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The second moment computations are illustrated below:

lim
�→0

1

�
Var∗

[
�Yk�

∣∣
∣Fh

(k−1)�

]
= lim

�→0

1

�

(
A∗
20 + B∗

20h
∗
k�

)

= lim
�→0

1

�

(
0 + �h∗

k�

) = ht .

lim
�→0

1

�
Var∗

[
�h(k+1)�

∣∣
∣Fh

(k−1)�

]
= lim

�→0

1

�

(
A∗
02 + B∗

02h
∗
k�

)

= lim
�→0

1

�

(
2

(
α∗(�)

)2 + 4
(
α∗(�)

)2 (
q∗(�)

)2
h∗
k�

)

= σ 2ht .

lim
�→0

1

�
Cov∗ [

�Yk�, �h(k+1)�

∣
∣∣Fh

(k−1)�

]
= lim

�→0

1

�

(
A∗
11 + B∗

11h
∗
k�

)

= lim
�→0

1

�

(
0 − 2α∗(�)q∗(�)h∗

k�

) = −σht .

Thus, the risk-neutral second moment matrix is given by:

�(Yt , ht )�
T (Yt , ht ) =

(
ht −σht

−σht σ 2ht

)
.

Using a Cholesky decomposition of �(Yt , ht ), leads to the diffusion coefficient of the diffu-
sion limit:

�(Yt , ht ) =
( √

ht 0
−σ

√
ht 0

)
. (A.22)

Replacing the resulting drift and diffusion coefficients into (A.21) we obtain the dynamics
from (4.5)–(4.6). ��

A.8 Proof of Proposition 4.2

Proof (i) See Broadie and Jain (2008).
(ii) In order to compute the limits of the GARCH-based variance swap prices, we need to

establish some useful results which shall be used throughout the proof. First, we notice
that as � → 0, or equivalently n → 0, the risk-neutral persistence and the quantities
introduced in (A.13) have the following behavior:

d∗(�) → 1, m∗(�) → θ∗, b∗(�) → 0, c∗(�) → 0. (A.23)

Next, it is easy to check that:

lim
�→0

1 − d∗(�)

�
= κ∗, lim

�→0

1 − (d∗(�))2

�
= 2κ∗, lim

�→0

(
d∗(�)

)n = e−κ∗
.

(A.24)
We now compute the limit of each coefficient from the quadratic representation in
(A.20). We have: Therefore, based on the (A.23) and (A.24), we find that:

lim
�→0

ξ∗
0 (�) = θ∗ −

θ∗
(
1 − e−κ∗T

)

κ∗T
, lim

�→0
ξ∗
1 (�) = 1 − e−κ∗T

κ∗T
, lim

�→0
ξ∗
2 (�) = 0.

(A.25)
Replacing (A.25) into the limit of equation (A.20) we find that lim�→0 K (0, T , nT ) =
K̄ (0, T ), where K̄ (0, T ) is given in (4.8). The same limit can be obtained if we directly
compute the limits of all quantities in Proposition 3.1. ��

123



www.manaraa.com

56 Annals of Operations Research (2019) 282:27–57

References

Aït-Sahalia, Y., Karaman, M., & Mancini, L. (2015). The term structure of variance swaps and risk premia.
SSRN working paper.

Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2003).Modeling and forecasting realized volatility.
Econometrica, 71(2), 579–625.

Badescu, A., Couch, M., Chen, Y., & Cui, Z. (2018). A unified valuation framework for variance swaps under
non-affine stochastic volatility models. Working Paper.

Badescu, A., Cui, Z., & Ortega, J.-P. (2017). Non-affine GARCH option pricing models, variance dependent
kernels, and diffusion limits. Journal of Financial Econometrics, 15(4), 602–648.

Benth, F. E., Groth, M., & Kufakunesu, R. (2007). Valuing volatility and variance swaps for a non-Gaussian
Ornstein–Uhlenbeck stochastic volatility model. Applied Mathematical Finance, 14(4), 347–363.

Bernard, C., & Cui, Z. (2014). Prices and asymptotics for discrete variance swaps. Applied Mathematical
Finance, 21(2), 140–173.

Bernard, C., Cui, Z., & McLeish, D. (2014). Convergence of the discrete variance swap in time-homogeneous
diffusion models. Quantitative Finance Letters, 2(1), 1–6.

Broadie, M., & Jain, A. (2008). The effect of jumps and discrete sampling on volatility and variance swaps.
International Journal of Theoretical and Applied Finance, 11(8), 761–797.

Brockhaus, O. (2000). Equity derivatives and market risk models. New York: Risk Books.
Carr, P., & Lee, R. (2009). Volatility derivatives. Annual Review of Financial Economics, 1(1), 319–339.
Carr, P., & Madan, D. (1998). Towards a theory of volatility trading (pp. 417–427). Volatility: New estimation

techniques for pricing derivatives.
Chorro, C., & Rahantamialisoa, F. (2016). Option valuation with IG_GARCHmodel and an U-shaped pricing

kernel. working paper.
Christoffersen, P., Heston, S., & Jacobs, K. (2013). Capturing option anomalies with a variance-dependent

pricing kernel. Review of Financial Studies, 26(8), 1963–2006.
Christoffersen, P., Jacobs, K., & Ornthanalai, C. (2013). GARCH option valuation: Theory and evidence. The

Journal of Derivatives, 21(2), 8–41.
Demeterfi, K., Derman, E., Kamal, M., & Zou, J. (1999). A guide to volatility and variance swaps. The Journal

of Derivatives, 6(4), 9–32.
Duan, J., &Yeh, C. (2010). Jump and volatility risk premiums implied byVIX. Journal of Economic Dynamics

and Control, 34(11), 2232–2244.
Francq, C., & Zakoian, J.-M. (2011). GARCH models: Structure, statistical inference and financial applica-

tions. New York: Wiley.
Griessler, C., & Keller-Ressel, M. (2014). Convex order of discrete, continuous, and predictable quadratic

variation and applications to options on variance. SIAM Journal on Financial Mathematics, 5(1), 1–19.
Hao, J., & Zhang, J. (2013). GARCH option pricing models, the CBOE VIX and variance risk premium.

Journal of Financial Econometrics, 11(3), 556–580.
Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and

currency options. The Review of Financial Studies, 6, 327–343.
Heston, S., & Nandi, S. (2000). A closed-form GARCH option valuation model. Review of Financial Studies,

13(3), 585–625.
Heston, S., &Nandi, S. (2000). Derivatives on volatility: Some simple solutions based on observables. Federal

Reserve Bank of Atlanta Working Paper.
Hong, G. (2004). Forward smile and derivative pricing. UBS Working Paper.
Jacod, J., & Protter, P. (1998). Asymptotic error distributions for the Euler method for stochastic differential

equations. Annals of Probability pp. 267–307.
Jarrow, R., Kchia, Y., Larsson, M., & Protter, P. (2013). Discretely sampled variance and volatility swaps

versus their continuous approximations. Finance and Stochastics, 17(2), 305–324.
Javaheri, A., Wilmott, P., & Haug, E. G. (2004). GARCH and volatility swaps. Quantitative Finance, 4(5),

589–595.
Kallsen, J., Muhle-Karbe, J., & Voß, M. (2011). Pricing options on variance in affine stochastic volatility

models. Mathematical Finance, 21(4), 627–641.
Khrapov, S., & Renault, E. (2016). Affine option pricing model in discrete time. working paper.
Lalancette, S., & Simonato, J.-G. (2017). The role of the conditional skewness and kurtosis in VIX index

valuation. European Financial Management, 23(2), 325–354.
Lian, G., Chiarella, C., & Kalev, P. S. (2014). Volatility swaps and volatility options on discretely sampled

realized variance. Journal of Economic Dynamics & Control, 47, 239–262.
Majewski, A. A., Bormetti, G., & Corsi, F. (2015). Smile from the past: A general option pricing framework

with multiple volatility and leverage components. Journal of Econometrics, 187(2), 521–531.

123



www.manaraa.com

Annals of Operations Research (2019) 282:27–57 57

Mencía, J., & Sentana, E. (2013). Valuation of VIX derivatives. Journal of Financial Economics, 108(2),
367–391.

Nelson, D. B. (1990). ARCH models as diffusion approximations. Journal of Econometrics, 45(1), 7–38.
Song, Z., & Xiu, D. (2016). A tale of two option markets: Pricing kernels and volatility risk. Journal of

Econometrics, 190(1), 176–196.
Swishchuk, A. (2005).Modeling and pricing of variance swaps for stochastic volatilitieswith delay.WILMOTT

Magazine, 19(September), 63–73.
Swishchuk, A. (2013). Modeling and pricing of swaps for financial and energy markets with stochastic

volatilities. Singapore: World Scientific.
Wang, T., Shen, Y., Jiang, Y., & Zhuo, H. (2017). Pricing the CBOE VIX futures with the Heston–Nandi

GARCH model. Journal of Futures Markets, 37, 641–659.
Zhu, S.-P., & Lian, G.-H. (2011). A closed-form exact solution for pricing variance swaps with stochastic

volatility. Mathematical Finance, 21, 233–256.

123



www.manaraa.com

Reproduced with permission of copyright owner.
Further reproduction prohibited without permission.


	Closed-form variance swap prices under general affine GARCH models and their continuous-time limits
	Abstract
	1 Introduction
	2 Affine GARCH models and exponential pricing kernels
	2.1 A general affine GARCH pricing framework 
	2.2 The affine Gaussian GARCH model (HN-GARCH model)

	3 Variance swap valuation in affine GARCH models
	4 Variance swaps for GARCH diffusion limits and convergence
	4.1 The HN-GARCH diffusion limit under the variance dependent pricing kernel
	4.2 Variance swaps for continuous time limits and convergence results

	5 Numerical examples
	5.1 Term structure of variance swaps
	5.2 Convergence of variance swap prices

	6 Conclusion
	Acknowledgements
	A Appendix
	A.1 Proof of Proposition 2.1
	A.2 Proof of Proposition 2.2
	A.3 Proof of Corollary 2.1
	A.4 Proof of Lemma 3.1
	A.5 Proof of Proposition 3.1
	A.6 Proof of Corollary 3.1
	A.7 Proof of Proposition 4.1
	A.8 Proof of Proposition 4.2

	References




